Publications by authors named "R O Esenaliev"

Skin water content monitoring is important for diagnostics and management of edema, dehydration, and other skin conditions as well as for cosmetic applications. Because optoacoustic (OA) technique has high (optical) contrast and (ultrasound) resolution and significant probing depth, it may be suitable for accurate, noninvasive water content monitoring in the skin. In this work we studied OA response from skin tissue phantoms and human wrist skin in the wavelength range from 1370 nm to 1650 nm using a novel, tunable OPO OA system.

View Article and Find Full Text PDF

The fluorescence-based methods of single-molecule optical detection have opened up unprecedented possibilities for imaging, monitoring, and sensing at a single-molecule level. However, single-molecule detection methods are very slow, making them practically inapplicable. In this paper, we show how to overcome this key limitation using the expanded laser spot, laser excitation in a nonfluorescent spectral window of biomolecules, and more binding fluorescent molecules on a biomolecule that increases the detection volume and the number of collected photons.

View Article and Find Full Text PDF

Background: Researchers have explored the use of adipose-derived stem cells (ASCs) as a cell-based therapy to cover wounds in burn patients; however, underlying mechanistic aspects are not completely understood. We hypothesized that ASCs would improve post-burn wound healing after eschar excision and grafting by increasing wound blood flow via induction of angiogenesis-related pathways.

Methods: To test the hypothesis, we used an ovine burn model.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) can lead to chronic diseases, including neurodegenerative disorders and epilepsy. The hippocampus, one of the most affected brain region after TBI, plays a critical role in learning and memory and is one of the only two regions in the brain in which new neurons are generated throughout life from neural stem cells (NSC) in the dentate gyrus (DG). These cells migrate into the granular layer where they integrate into the hippocampus circuitry.

View Article and Find Full Text PDF

We have developed a novel, non-invasive nano-pulsed laser therapy (NPLT) system that combines the benefits of near-infrared laser light (808 nm) and ultrasound (optoacoustic) waves, which are generated with each short laser pulse within the tissue. We tested NPLT in a rat model of blast-induced neurotrauma (BINT) to determine whether transcranial application of NPLT provides neuroprotective effects. The laser pulses were applied on the intact rat head 1 h after injury using a specially developed fiber-optic system.

View Article and Find Full Text PDF