Publications by authors named "R Nicholas Laribee"

The Ccr4-Not complex contains the poorly understood Not4 ubiquitin ligase that functions in transcription, mRNA decay, translation, proteostasis, and endolysosomal nutrient signaling. To gain further insight into the in vivo functions of the ligase, we performed quantitative proteomics in Saccharomyces cerevisiae using yeast cells lacking Not4, or cells overexpressing wild-type Not4 or an inactive Not4 mutant. Herein, we provide evidence that balanced Not4 activity maintains ribosomal protein (RP) homeostasis independent of changes to RP mRNA or known Not4 ribosomal substrates.

View Article and Find Full Text PDF

The Ccr4-Not complex containing the Not4 ubiquitin ligase regulates gene transcription and mRNA decay, yet it also has poorly defined roles in translation, proteostasis, and endolysosomal-dependent nutrient signaling. To define how Ccr4-Not mediated ubiquitin signaling regulates these additional processes, we performed quantitative proteomics in the yeast lacking the Not4 ubiquitin ligase, and also in cells overexpressing either wild-type or functionally inactive ligase. Herein, we provide evidence that both increased and decreased Ccr4-Not ubiquitin signaling disrupts ribosomal protein (RP) homeostasis independently of reduced RP mRNA changes or reductions in known Not4 ribosomal substrates.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common primary brain malignancy in adults with a dismal prognosis. Despite advances in genomic analysis and surgical technique and the development of targeted therapeutics, most treatment options are ineffective and mainly palliative. Autophagy is a form of cellular self-digestion with the goal of recycling intracellular components to maintain cell metabolism.

View Article and Find Full Text PDF

The cellular response to environmental exposures, such as nutrient shifts and various forms of stress, requires the integration of the signaling apparatus that senses these environmental changes with the downstream gene regulatory machinery. Delineating this molecular circuitry remains essential for understanding how organisms adapt to environmental flux, and it is critical for determining how dysregulation of these mechanisms causes disease. Ccr4-Not is a highly conserved regulatory complex that controls all aspects of the gene expression process.

View Article and Find Full Text PDF

The Ccr4-Not complex functions as an effector of multiple signaling pathways that control gene transcription and mRNA turnover. Consequently, Ccr4-Not contributes to a diverse array of processes, which includes a significant role in cell metabolism. Yet a mechanistic understanding of how it contributes to metabolism is lacking.

View Article and Find Full Text PDF