Purpose: To demonstrate the feasibility of hepatic 3D MR elastography (MRE) at 0.55 T in healthy volunteers using Hadamard encoding and to study the effects of concomitant fields in the domain of MRE in general.
Methods: Concomitant field effects in MRE are assessed using a Taylor series expansion and an encoding scheme is proposed to study the corresponding effects on 3D MRE at 0.
Purpose: To develop a 3D distortion-free reduced-FOV diffusion-prepared gradient-echo sequence and demonstrate its application in vivo for diffusion imaging of the spinal cord in healthy volunteers.
Methods: A 3D multi-shot reduced-FOV diffusion-prepared gradient-echo acquisition is achieved using a slice-selective tip-down pulse in the phase-encoding direction in the diffusion preparation, combined with magnitude stabilizers, centric k-space encoding, and 2D phase navigators to correct for intershot phase errors. The accuracy of the ADC values obtained using the proposed approach was evaluated in a diffusion phantom and compared to the tabulated reference ADC values and to the ADC values obtained using a standard spin echo diffusion-weighted single-shot EPI sequence (DW-SS-EPI).
IEEE Trans Radiat Plasma Med Sci
November 2024
Background: Coronary computed tomography angiography (CCTA) is recommended as the first-line diagnostic imaging modality in low-to-intermediate-risk individuals suspected of stable coronary artery disease (CAD). However, CCTA exposes patients to ionizing radiation and potentially nephrotoxic contrast agents. Invasive coronary angiography is the gold-standard investigation to guide coronary revascularisation strategy; however, invasive procedures incur an inherent risk to the patient.
View Article and Find Full Text PDF