Publications by authors named "R Nehme"

Fatigue is one of the most prevalent and disabling symptoms among patients with MS, but there is limited research investigating the longitudinal determinants of fatigue progression. This study aims to identify the sociodemographic, behavioral and clinical characteristics, and therapeutic regimens that are correlated with worsening fatigue over time in patients diagnosed with MS. This is a retrospective chart review of 483 patients.

View Article and Find Full Text PDF

Background & Aims: Muscle strength is a key predictor of both quality of life and mortality. Although numerous studies have investigated the relationship between omega-3 (ω-3) intake and muscle strength, the evidence remains inconclusive. Furthermore, it is unclear whether this association is influenced by protein intake.

View Article and Find Full Text PDF

In recent years, biosurfactants (BS) produced by various bacteria, fungi and yeast strains have attracted much interest because of their unique properties and potential applications in many industries ranging from bioremediation to agriculture and biomedical to cosmetics. Glycolipids are a popular group of BS that include rhamnolipids, sophorolipids, mannosylerythritol, trehalose lipids, xylolipids and cellobiose lipids. Lipopeptides e.

View Article and Find Full Text PDF

Voltage imaging is a powerful technique for studying neuronal activity, but its effectiveness is often constrained by low signal-to-noise ratios (SNR). Traditional denoising methods, such as matrix factorization, impose rigid assumptions about noise and signal structures, while existing deep learning approaches fail to fully capture the rapid dynamics and complex dependencies inherent in voltage imaging data. Here, we introduce CellMincer, a novel self-supervised deep learning method specifically developed for denoising voltage imaging datasets.

View Article and Find Full Text PDF

Neuropsychiatric conditions pose substantial challenges for therapeutic development due to their complex and poorly understood underlying mechanisms. High-throughput, unbiased phenotypic assays present a promising path for advancing therapeutic discovery, especially within disease-relevant neural tissues. Here, we introduce NeuroPainting, a novel adaptation of the Cell Painting assay, optimized for high-dimensional morphological phenotyping of neural cell types, including neurons, neuronal progenitor cells, and astrocytes derived from human stem cells.

View Article and Find Full Text PDF