We explore dynamic nuclear polarization using electron spins in the photo-excited triplet state (Triplet-DNP) in magnetically oriented microcrystal arrays (MOMAs) of pentacene-doped p-terphenyl, in which the individual crystallites are magnetically aligned and UV-cured. In contrast to the conventional approach to Triplet-DNP in powder, which suffers from reduced nuclear polarization due to the averaged electron polarization and the broadening of electron-spin resonance, Triplet-DNP of the MOMAs offers as high dynamic polarization as that attainable in single-crystals. In the case of pentacene-doped p-terphenyl, the enhanced H polarization in the one-dimensional MOMA, prepared simply by leaving the suspension in a stationary magnetic field before UV curation, can be higher than that attainable in the powder sample by an order of magnitude and comparable to that in single crystals and in the three-dimensional MOMA made using a modulational rotating field.
View Article and Find Full Text PDFMutations in ASXL1 and SETBP1 genes have been frequently detected and often coexist in myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). We previously showed that coexpression of mutant ASXL1 and SETBP1 in hematopoietic progenitor cells induced downregulation of TGFβ pathway genes and promoted the development of MDS/AML in a mouse model of bone marrow transplantation. However, whether the repression of TGFβ pathway in fact contributes to leukaemogenesis remains unclear.
View Article and Find Full Text PDFMPIase is the first known glycolipid that is essential for membrane protein integration in the inner membrane of E. coli. Since the amount of natural MPIase available for analysis is limited and it contains structural heterogeneity, precisely designed synthetic derivatives are promising tools for further elucidation of its membrane protein integration mechanism.
View Article and Find Full Text PDF() is frequently mutated in myeloid malignancies and clonal hematopoiesis of indeterminate potential (CHIP). Although loss of ASXL1 promotes hematopoietic transformation, there is growing evidence that mutations might confer an alteration of function. In this study, we identify that physiological expression of a C-terminal truncated Asxl1 mutant in vivo using conditional knock-in (KI) results in myeloid skewing, age-dependent anemia, thrombocytosis, and morphological dysplasia.
View Article and Find Full Text PDF