Publications by authors named "R N V S Suragani"

Cardiomyopathies are ascribed to a variety of etiologies, present with diverse clinical phenotypes, and lack disease-modifying treatments. Mounting evidence implicates dysregulated activin receptor signaling in heart disease and highlights inhibition of this pathway as a potential therapeutic target. Here, we explored the effects of activin ligand inhibition using ActRIIB:ALK4-Fc, a heterodimeric receptor fusion protein, in two mechanistically distinct murine models of cardiomyopathy.

View Article and Find Full Text PDF

Ligands of the transforming growth factor-β (TGF-β) superfamily are important targets for therapeutic intervention but present challenges because they signal combinatorially and exhibit overlapping activities in vivo. To obtain agents capable of sequestering multiple TGF-β superfamily ligands with novel selectivity, we generated soluble, heterodimeric ligand traps by pairing the extracellular domain (ECD) of the native activin receptor type IIB (ActRIIB) alternately with the ECDs of native type I receptors activin receptor-like kinase 4 (ALK4), ALK7, or ALK3. Systematic analysis of these heterodimeric constructs by surface plasmon resonance, and comparison with their homodimeric counterparts, revealed that each type I receptor partner confers a distinct ligand-binding profile to the heterodimeric construct.

View Article and Find Full Text PDF

Patients with neuromuscular disorders suffer from a lack of treatment options for skeletal muscle weakness and disease comorbidities. Here, we introduce as a potential therapeutic agent a heterodimeric ligand-trapping fusion protein, ActRIIB:ALK4-Fc, which comprises extracellular domains of activin-like kinase 4 (ALK4) and activin receptor type IIB (ActRIIB), a naturally occurring pair of type I and II receptors belonging to the TGF-β superfamily. By surface plasmon resonance (SPR), ActRIIB:ALK4-Fc exhibited a ligand binding profile distinctly different from that of its homodimeric variant ActRIIB-Fc, sequestering ActRIIB ligands known to inhibit muscle growth but not trapping the vascular regulatory ligand bone morphogenetic protein 9 (BMP9).

View Article and Find Full Text PDF

In β-thalassaemia, anaemia results from ineffective erythropoiesis characterized by inhibition of late-stage erythroid differentiation. We earlier used luspatercept and RAP-536 protein traps for certain Smad2/3-pathway ligands to implicate Smad2/3-pathway overactivation in dysregulated erythroid differentiation associated with murine β-thalassaemia and myelodysplasia. Importantly, luspatercept alleviates anaemia and has been shown to reduce transfusion burden in patients with β-thalassaemia or myelodysplasia.

View Article and Find Full Text PDF

Signaling by the TGF-β superfamily is important in the regulation of hematopoiesis and is dysregulated in myelodysplastic syndromes (MDSs), contributing to ineffective hematopoiesis and clinical cytopenias. TGF-β, activins, and growth differentiation factors exert inhibitory effects on red cell formation by activating canonical SMAD2/3 pathway signaling. In this Review, we summarize evidence that overactivation of SMAD2/3 signaling pathways in MDSs causes anemia due to impaired erythroid maturation.

View Article and Find Full Text PDF