Purpose: Breast cancer treatments (chemotherapy and hormone therapy) can cause a rapid loss in bone mineral density, leading to osteoporosis and fractures later in life. Fortunately, preventative measures (vitamin D, exercise, etc.) can delay bone loss if employed early enough.
View Article and Find Full Text PDFLead remains a significant environmental toxin, and we believe we may have identified a novel target of lead toxicity in articular chondrocytes. These cells are responsible for the maintenance of joint matrix, and do so under the regulation of TGF-β signaling. As lead is concentrated in articular cartilage, we hypothesize that it can disrupt normal chondrocyte phenotype through suppression of TGF-β signaling.
View Article and Find Full Text PDFSince transforming growing factor-β (TGF-β)/Smad signaling inhibits chondrocyte maturation, endogenous negative regulators of TGF-β signaling are likely also important regulators of the chondrocyte differentiation process. One such negative regulator, Ski, is an oncoprotein that is known to inhibit TGF-β/Smad3 signaling via its interaction with phospho-Smad3 and recruitment of histone deacetylases (HDACs) to the DNA binding complex. Based on this, we hypothesized that Ski inhibits TGF-β signaling and accelerates maturation in chondrocytes via recruitment of HDACs to transcriptional complexes containing Smads.
View Article and Find Full Text PDFIntroduction: Increasing obesity and type 2 diabetes, in part due to the high-fat (HF) Western diet, parallels an increased incidence of osteoarthritis (OA). This study was undertaken to establish a causal relation between the HF diet and accelerated OA progression in a mouse model and to determine the relative roles of weight gain and metabolic dysregulation in this progression.
Methods: Five-week-old C57BL/6 mice were placed on HF (60% kcal) or low-fat (lean, 10% kcal) diets for 8 or 12 weeks before transecting the medial collateral ligament and excising a segment of the medial meniscus of the knee to initiate OA.
Osteosarcoma is a devastating tumor of bone, primarily affecting adolescents. Osteosarcoma tumors are notoriously radioresistant. Radioresistant cancers, including osteosarcoma, typically exhibit a considerable potential for relapse and development of metastases following treatment.
View Article and Find Full Text PDF