In both nature and industry, aerosol droplets contain complex mixtures of solutes, which in many cases include multiple inorganic components. Understanding the drying kinetics of these droplets and the impact on resultant particle morphology is essential for a variety of applications including improving inhalable drugs, mitigating disease transmission, and developing more accurate climate models. However, the previous literature has only focused on the relationship between drying kinetics and particle morphology for aerosol droplets containing a single nonvolatile component.
View Article and Find Full Text PDFA study is presented of a method for creating an acoustic flow sensor that is generally compatible with current silicon microfabrication processes. An aim of this effort is to obtain a design consisting of a minimal departure from the existing designs employed in mass-produced silicon microphones. Because the primary component in all of these microphones is the cavity behind the pressure-sensing diaphragm, we begin with a study of the acoustic particle velocity within a cavity in a planar surface.
View Article and Find Full Text PDFThis Letter describes the first, to the best of our knowledge, demonstration of a velocity measurement by nitric oxide ionization induced flow tagging and imaging (NiiFTI) of a high-enthalpy hypersonic flow utilizing naturally formed nitric oxide. The measurements were conducted in the hypervelocity expansion tunnel (HXT) at Texas A&M University in Mach 8.5 and Mach 10 flows near an ogive test article.
View Article and Find Full Text PDFPurpose: Increasing CT capacity to keep pace with rising ED demand is critical. The conventional process has inherent drawbacks. We evaluated an off-console automated AI enhanced workflow which moves all final series creation off-console.
View Article and Find Full Text PDFHypothesis: Supra-particle formation by evaporation of an aqueous aerosol droplet containing nano-colloidal particles is challenging to investigate but has significant applications. We hypothesise that the Peclet number, Pe, which compares the effectiveness of evaporation-induced advection to that of colloidal diffusion, is critical in determining supra-particle morphology and can be used to predict the dried morphology for droplet containing polydisperse nanoparticles.
Experiments: Sterically-stabilized diblock copolymer nanoparticles were prepared via polymerization-induced self-assembly (PISA).