Publications by authors named "R N Ibbett"

Background: Understanding how fungi degrade lignocellulose is a cornerstone of improving renewables-based biotechnology, in particular for the production of hydrolytic enzymes. Considerable progress has been made in investigating fungal degradation during time-points where CAZyme expression peaks. However, a robust understanding of the fungal survival strategies over its life time on lignocellulose is thereby missed.

View Article and Find Full Text PDF

Sugar beet pectin is rich in rhamnogalacturonan-I (RG-I) region, which is a potential source of prebiotics. RG-I pectin cannot be extracted the same way as commercial homogalacturan-rich pectin using hot acid. Therefore, this study has explored several alternative methods, including microwave-assisted extraction (MAE) and conventional-solvent extraction (CSE) at atmospheric pressure using different solvents, and microwave-assisted hydrothermal extraction (MAHE) under pressure using water.

View Article and Find Full Text PDF

In 2015/2016, the total municipal solid waste (MSW) collected by local authority in the U.K. was 26 million tonnes and over 57% is still put into landfill or incinerated.

View Article and Find Full Text PDF

The aim of this study was 1) to investigate the influence of polymeric additives such as carboxyl methyl cellulose (CMC) and locust bean gum (LBG) added before and after homogenisation on the moisture uptake of microfibrillar cellulose (MFC) in the dry and semi-wet state; and 2) to further understand the thermally induced structural transitions of low moisture MFC in the presence of the polymeric additives. A higher moisture content in the highly dense MFC network maintains the fibrillated network structure, which is lost during the drying process resulting in MFC aggregates. The addition of polymeric additives results in the regaining of the structure upon redispersion of the dry material with CMC being more effective than LBG).

View Article and Find Full Text PDF

An innovative procedure for plant chloroplasts isolation has been proposed, which consists of juice extraction by physical fractionation from plant material and recovery of its chloroplast-rich fraction (CRF) by centrifugation. This simple method has been applied to pea vine haulm subjected to different post-harvest treatments: blanching, storage at different relative humidity values and fermentation. Additionally, freeze storage of the extracted juice was carried out.

View Article and Find Full Text PDF