Plant membrane-bound prenyltransferases (PTs) catalyse the transfer of prenyl groups to acceptor substrates, phenols, using prenyl diphosphates as the donor substrate. The presence of prenyl residues in the reaction products, prenylated phenols, is key to the expression of a variety of physiological activities. Plant PTs generally exhibit high specificities for both substrate recognition and prenylation sites, while the molecular mechanism involved in these enzymatic properties is largely unknown.
View Article and Find Full Text PDFArtepillin C is a diprenylated phenylpropanoid with various pharmacological benefits for human health. Its natural occurrence is limited to a few Asteraceae plants, such as species, necessitating a stable supply through synthetic biology. In , the utilization of aromatic substrates within the cell was limited, resulting in very low production of artepillin C.
View Article and Find Full Text PDFPrenylated phenolics occur in over 4000 species in the plant kingdom, most of which are known as specialized metabolites with high chemical diversity. Many of them have been identified as pharmacologically active compounds from various medicinal plants, in which prenyl residues play a key role in these activities. Prenyltransferases (PTs) responsible for their biosynthesis have been intensively studied in the last two decades.
View Article and Find Full Text PDFBackground Context: Adult spinal deformity (ASD) patients often complain of walking discomfort. However, dynamic balance evaluation methods of gait in ASD have not been well established.
Design: Case series study.