Publications by authors named "R Mulloy"

Adenocarcinoma, while constituting the predominant variant among small bowel cancers, is a component of the broader category of primary small bowel malignancies, which are notably infrequent in occurrence. The diagnosis of such malignancies is often markedly delayed, a consequence of their insidious onset and the nonspecific nature of the abdominal symptoms presented. A 69-year-old Caucasian male presented to the emergency department manifesting acute, sharp, and colicky abdominal pain accompanied by a single episode of vomiting, all developing over one day.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike glycoprotein (S) binds to angiotensin-converting enzyme 2 (ACE2) to mediate membrane fusion via two distinct pathways: 1) a surface, serine protease-dependent or 2) an endosomal, cysteine protease-dependent pathway. In this study, we found that SARS-CoV-2 S has a wider protease usage and can also be activated by TMPRSS13 and matrix metalloproteinases (MMPs). We found that MMP-2 and MMP-9 played roles in SARS-CoV-2 S cell-cell fusion and TMPRSS2- and cathepsin-independent viral entry in cells expressing high MMP levels.

View Article and Find Full Text PDF
Article Synopsis
  • There is a pressing need for new antiviral drugs, and research shows that the drug 6-thioguanine (6-TG) can inhibit the replication of viruses like HCoV-OC43 and SARS-CoV-2.
  • 6-TG disrupts early infection processes by causing issues with the Spike protein, preventing the viruses from effectively replicating and assembling.
  • The antiviral activity of 6-TG requires it to be converted into a specific nucleotide form, and further studies indicate that it might target an unidentified small GTPase, presenting a potential avenue for developing host-targeted antiviral therapies.
View Article and Find Full Text PDF

A dysregulated proinflammatory cytokine response is characteristic of severe coronavirus infections caused by SARS-CoV-2, yet our understanding of the underlying mechanism responsible for this imbalanced immune response remains incomplete. Processing bodies (PBs) are cytoplasmic membraneless ribonucleoprotein granules that control innate immune responses by mediating the constitutive decay or suppression of mRNA transcripts, including many that encode proinflammatory cytokines. PB formation promotes turnover or suppression of cytokine RNAs, whereas PB disassembly corresponds with the increased stability and/or translation of these cytokine RNAs.

View Article and Find Full Text PDF

Ebola virus (EBOV) entry requires internalization into host cells and extensive trafficking through the endolysosomal network in order to reach late endosomal/lysosomal compartments that contain triggering factors for viral membrane fusion. These triggering factors include low-pH-activated cellular cathepsin proteases, which cleave the EBOV glycoprotein (GP), exposing a domain which binds to the filoviral receptor, the cholesterol transporter Niemann-Pick C1 (NPC1). Here, we report that trafficking of EBOV to NPC1 requires expression of the homotypic fusion and protein sorting (HOPS) tethering complex as well as its regulator, UV radiation resistance-associated gene (UVRAG).

View Article and Find Full Text PDF