Publications by authors named "R Mukkamala"

We investigated the potential of the transmission line model as a digital twin of aneurysmal aorta by comparatively analyzing how a uniform lossless tube-load model were fitted to the carotid and femoral artery tonometry waveforms pertaining to (i) 79 abdominal aortic aneurysm (AAA) patients vs their matched controls (CON) and (ii) 35 AAA patients before vs after endovascular aneurysm repair (EVAR). The uniform lossless tube-load model fitted the tonometry waveforms pertaining to AAA as well as CON and EVAR. In addition, the parameters in the tube-load model exhibited physiologically explainable changes: when normalized, both pulse transit time and reflection coefficient increased with AAA and decreased after EVAR, which can be explained by the increase in arterial compliance and the decrease in arterial inertance due to the aortic expansion associated with AAA.

View Article and Find Full Text PDF

Intraoperative hypotension prediction has been increasingly emphasized due to its potential clinical value in reducing organ injury and the broad availability of large-scale patient datasets and powerful machine learning tools. Hypotension prediction methods can mitigate low blood pressure exposure time. However, they have yet to be convincingly demonstrated to improve objective outcomes; furthermore, they have recently become controversial.

View Article and Find Full Text PDF
Article Synopsis
  • Coordination of cellular signaling and adaptive metabolism is crucial for energy balance and homeostasis, with phosphorylation being a key regulatory mechanism for metabolic networks.
  • The study categorizes phosphorylation sites on metabolic enzymes, finding that many are located near functional areas and emphasizing ones on oxidoreductases, particularly phosphotyrosine sites linked to enzyme function.
  • Using a high fat diet model, the research uncovers sex-specific changes in metabolic regulation and identifies specific phosphotyrosine sites that predict metabolic responses, revealing how they influence enzyme activity and metabolic pathways.
View Article and Find Full Text PDF

The past several decades have seen rapid advances in diagnosis and treatment of cardiovascular diseases and stroke, enabled by technological breakthroughs in imaging, genomics, and physiological monitoring, coupled with therapeutic interventions. We now face the challenge of how to (1) rapidly process large, complex multimodal and multiscale medical measurements; (2) map all available data streams to the trajectories of disease states over the patient's lifetime; and (3) apply this information for optimal clinical interventions and outcomes. Here we review new advances that may address these challenges using digital twin technology to fulfill the promise of personalized cardiovascular medical practice.

View Article and Find Full Text PDF

Fibroblast activation protein (FAP) has attracted considerable attention as a possible target for the radiotherapy of solid tumors. Unfortunately, initial efforts to treat solid tumors with FAP-targeted radionuclides have yielded only modest clinical responses, suggesting that further improvements in the molecular design of FAP-targeted radiopharmaceutical therapies (RPT) are warranted. In this study, we report several advances on the previously described FAP6 radioligand that increase tumor retention and accelerate healthy tissue clearance.

View Article and Find Full Text PDF