Diamonds produced using chemical vapor deposition (CVD) have found many applications in various fields of science and technology. Many applications involve polycrystalline CVD diamond films of micron thicknesses. However, a variety of optical, thermal, mechanical, and radiation sensing applications require more bulky CVD diamond samples.
View Article and Find Full Text PDFThe proton dynamics of a 2D water monolayer confined inside a graphene slit pore is studied in Cartesian and molecular frames of reference using molecular dynamics simulations. The vibrational density of states of the proton was calculated versus temperature and was further used to deduce the mean kinetic energy of the hydrogen atoms, Ke(H), in both frames of reference. The directional components of Ke(H) are in good agreement with experimental observations for bulk as well as nanoconfined water.
View Article and Find Full Text PDFThe reported anomalies of the proton mean kinetic energy, Ke(H), in nanoconfined water, as measured by deep inelastic neutron scattering (DINS), constitute a longstanding problem related to proton dynamics in hydrogen-bonded systems. A considerable number of theoretical attempts to explain these anomalies have failed. The mean vibrational density of states (VDOS) of protons in water nanoconfined inside single wall carbon nanotubes (SWCNTs) is calculated as a function of temperature and SWCNT diameter, , by classical molecular dynamics (MD) simulation using the TIP4P-2005f water model.
View Article and Find Full Text PDFThe proton mean kinetic energy, Ke(H), of water confined in nanocavities of beryl (BeAlSiO) at 5 K was obtained by simulating the partial vibrational density of states from density functional theory based first-principles calculations. The result, Ke(H) = 104.4 meV, is in remarkable agreement with the 5 K deep inelastic neutron scattering (DINS) measured value of 105 meV.
View Article and Find Full Text PDFJ Chem Phys
February 2016
The mean atomic kinetic energies of the proton, Ke(H), and of the deuteron, Ke(D), were calculated in moderate and strongly hydrogen bonded (HB) systems, such as the ferro-electric crystals of the KDP type (XH2PO4, X = K, Cs, Rb, Tl), the DKDP (XD2PO4, X = K, Cs, Rb) type, and the X3H(SO4)2 superprotonic conductors (X = K, Rb). All calculations utilized the simulated partial phonon density of states, deduced from density functional theory based first-principle calculations and from empirical lattice dynamics simulations in which the Coulomb, short range, covalent, and van der Waals interactions were accounted for. The presently calculated Ke(H) values for the two systems were found to be in excellent agreement with published values obtained by deep inelastic neutron scattering measurements carried out using the VESUVIO instrument of the Rutherford Laboratory, UK.
View Article and Find Full Text PDF