This work presents a hardware-based digital emulator capable of digitally driving a permanent magnet synchronous machine electronic setup. The aim of this work is to present a high-performance, cost-effective, and portable complementary solution when new paradigms of electronic drive design are generated, such as machine early failure detection, fault-tolerant drive, and high-performance control strategy implementations. In order to achieve the high performance required by the digital emulator, the electronic drive models (permanent-magnet synchronous machine, voltage-source inverter, motor-control strategy) are digitally described in Verilog hardware description language and implemented on a field programmable gate array (FPGA) digital platform using two approaches: parallel and sequential methods.
View Article and Find Full Text PDFThermography is a useful tool since it provides information that may help in the diagnostic of several diseases in a noninvasive and fast way. Particularly, thermography has been applied in the study of the diabetic foot. However, most of these studies report only qualitative information making it difficult to measure significant parameters such as temperature variations.
View Article and Find Full Text PDF