Publications by authors named "R Montes"

The nonsteroidal anti-inflammatory drug naproxen (NPX) is among the most consumed pharmaceuticals worldwide, being detected in surface waters within the ng to μg/L range. Considering the limited chronic ecotoxicity data available for NPX in aquatic ecosystems, the present study aimed at evaluating its impact in the model organism , following a full life-cycle exposure to environmentally relevant concentrations (0.1 to 5.

View Article and Find Full Text PDF

Wastewater-based epidemiology (WBE) is a well-established approach that can provide objective and real-time data on the consumption of substances such as pharmaceuticals. However, most of the studies reported so far compares consumption data obtained using WBE with those derived from prescription data from public health systems, which is often incomplete and might represent a source of uncertainty. This study aims to compare the measured pharmaceutical consumption back calculated with the WBE approach with consumption derived from dispensed pharmaceuticals in two regions of Spain, managed by two different Health Systems.

View Article and Find Full Text PDF

Perfluoroalkyl substances (PFAS) are chemical compounds that have been widely used in industry and manufacture. Occurrence, together with persistence and recent toxicological effects data, has promoted the regulation of 20 PFAS (carboxylic and sulfonic) acids in drinking water through the recent Directive 2020/2184/EU. This Regulation included PFAS with different carbon chain lengths (from C to C) and limited the total PFAS concentration (as sum) to a maximum of 0.

View Article and Find Full Text PDF

Wastewater-based epidemiology (WBE) has become an invaluable tool for tracking the evolution of use or exposure of/to numerous substances. Bisphenols, commonly utilized in manufacturing plastic goods, have been categorized as endocrine disrupting chemicals, underscoring the critical need for real-time data on their local-level exposure to safeguard public health. In this study, we have developed a novel analytical method and WBE framework for the assessment of population-level exposure to bisphenol A (BPA) and its most prominent substitutes, bisphenols F and S (BPF and BPS), through the determination their Phase II metabolites in wastewater by WBE.

View Article and Find Full Text PDF

Bisphenols are widely used as monomers and additives in plastic production. Thus, bisphenol A (BPA) and its most prominent substitutes have been detected in many environmental and human samples. This study proposes an online solid-phase extraction analytical methodology coupled to liquid chromatography with tandem mass spectrometry for the determination of six bisphenols (BPA and bisphenols F (BPF), S (BPS), AF (BPAF), B (BPB), and E (BPE)) in urine samples as an efficient and automated methodology.

View Article and Find Full Text PDF