Publications by authors named "R Mondelli"

This study investigated the combined effects of adding niobium-fluoride (NbF) nanoparticles to a pit-and-fissure sealant. One resin sealant was reinforced with varying amounts of nanoparticles (0.3, 0.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the influence of simplified ceramic surface treatments on the microshear bond strength (μSBS) of 2 resin cements to a zirconia-reinforced lithium silicate (ZLS) material. Blocks of ZLS were sectioned to obtain a total of 90 specimens (1.5 mm thick), which were assigned to 9 different surface treatment protocols (n = 10).

View Article and Find Full Text PDF

Resin composites containing surface pre-reacted glass (S-PRG) have been introduced to reduce demineralization and improve remineralization of the tooth structure. However, water diffusion within the material is necessary for its action, which can impair its overall physicomechanical properties over time, including color stability. This study aimed to evaluate the color stability and related degree of conversion (DC) of four resin composites.

View Article and Find Full Text PDF

This in vitro study synthesized hybrid nanofibers embedded in graphene oxide (GO) and incorporated them into experimental resin composite monomers to evaluate their physical-mechanical properties. Inorganic-organic hybrid nanofibers were produced with precursor solutions of 1% wt. GO-filled Poly (d,l-lactide, PLA) fibers and scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) characterized the morphology and chemical composition of the spun fibers.

View Article and Find Full Text PDF

This systematic review provides an update on the effect of nanofibers as reinforcement on resin-based dental materials. A bibliographic search was conducted in MEDLINEPubMed, Embase, Web of Science, Scopus, BVS (LILACS, BBO e IBECS), Cochrane, LIVIVO, and gray literature (BDTD) to identify relevant articles up to May 2021. In vitro studies that evaluated and compared the mechanical properties of nanofibers resin-based composite materials, were eligible.

View Article and Find Full Text PDF