Traumatic injury to the spinal cord initiates a series of pathological cellular processes that exacerbate tissue damage at and beyond the original site of injury. This secondary damage includes oxidative stress and inflammatory cascades that can lead to further neuronal loss and motor deficits. Microglial activation is an essential component of these secondary signaling cascades.
View Article and Find Full Text PDFElevated levels of chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 have been reported in patients with temporal lobe epilepsy and in experimental seizures. However, the functional significance and molecular mechanism underlying CCL2-CCR2 signaling in epileptic brain remains largely unknown. In this study, we found that the upregulated CCL2 was mainly expressed in hippocampal neurons and activated microglia from mice 1 d after kainic acid (KA)-induced seizures.
View Article and Find Full Text PDFPhys Rev B Condens Matter
November 1996
Phys Rev B Condens Matter
March 1994
Net calcium flux (JCa) from bone in vitro is pH dependent. When pH falls below 7.40, through a reduction in [HCO3-], there is both physicochemical and cell-mediated JCa.
View Article and Find Full Text PDF