Publications by authors named "R Moeckli"

Purpose: Treatment planning for CyberKnife (CK) (Accuray, USA) can be performed with Precision (Accuray, USA) or RayStation (RS) (RaySearch Laboratories, Sweden) treatment planning systems (TPS). RaySearch recently released a new version of the CK module in RS 12A. The objective of the study was to compare plan quality between RS 12A and Precision.

View Article and Find Full Text PDF

Background And Purpose: FLASH or ultra-high dose rate (UHDR) radiation therapy (RT) has gained attention in recent years for its ability to spare normal tissues relative to conventional dose rate (CDR) RT in various preclinical trials. However, clinical implementation of this promising treatment option has been limited because of the lack of availability of accelerators capable of delivering UHDR RT. Commercial options are finally reaching the market that produce electron beams with average dose rates of up to 1000 Gy/s.

View Article and Find Full Text PDF

Purpose: This study explores the dosimetric feasibility and plan quality of hybrid ultra-high dose rate (UHDR) electron and conventional dose rate (CDR) photon (HUC) radiotherapy for treating deep-seated tumours with FLASH-RT.

Methods: HUC treatment planning was conducted optimizing a broad UHDR electron beam (between 20-250 MeV) combined with a CDR VMAT for a glioblastoma, a pancreatic cancer, and a prostate cancer case. HUC plans were based on clinical prescription and fractionation schemes and compared against clinically delivered plans.

View Article and Find Full Text PDF

Treatments at ultra-high dose rate (UHDR) have the potential to improve the therapeutic index of radiation therapy (RT) by sparing normal tissues compared to conventional dose rate irradiations. Insufficient and inconsistent reporting in physics and dosimetry of preclinical and translational studies may have contributed to a reproducibility crisis of radiobiological data in the field. Consequently, the development of a common terminology, as well as common recording, reporting, dosimetry, and metrology standards is required.

View Article and Find Full Text PDF

Background: Treatment delivery safety and accuracy are essential to control the disease and protect healthy tissues in radiation therapy. For usual treatment, a phantom-based patient specific quality assurance (PSQA) is performed to verify the delivery prior to the treatment. The emergence of adaptive radiation therapy (ART) adds new complexities to PSQA.

View Article and Find Full Text PDF