Publications by authors named "R Miyamoto"

Objective: Neuronal Intranuclear Inclusion Disease (NIID) is a neurodegenerative disease affecting the central and peripheral nerves. We aimed to assess the pathophysiological features of peripheral nerve dysfunction in NIID.

Methods: We observed six unrelated NIID patients through clinical records, nerve conduction studies, and multiple measures of motor nerve excitability.

View Article and Find Full Text PDF

The pathogenesis of heart failure with preserved ejection fraction (HFpEF) remains unclear, and effective treatments are limited. HFpEF is more prevalent in females, indicating potential gender differences in its pathogenesis. However, no female HFpEF model animals have been established.

View Article and Find Full Text PDF

Muscle tissue is stabilized by the strong interaction between laminin and matriglycan. Matriglycan is a polysaccharide composed of the repeating disaccharide, -3Xylα1-3GlcAβ1-, and is a pivotal part of the core M3 O-mannosyl glycan. Patients with muscular dystrophy cannot synthesize matriglycan or the core M3 O-mannosyl glycan due to a defect in or the lack of glycosyltransferases owing to glycan synthesis.

View Article and Find Full Text PDF

Background: Most coronary artery aneurysms (CAAs) are clinically asymptomatic and are only detected incidentally during cardiac imaging. However, CAAs can cause fatal complications such as cardiac tamponade following a rupture. Reports of contained ruptures of CAAs are limited.

View Article and Find Full Text PDF

This study aimed to propose a methodology for developing a mechanistic model for viral clearance of the minute virus of mice (MVM) on flow-through anion exchange (AEX) chromatography. Protein surface analysis was applied to investigate the possibility of molecular interaction between the recombinant biotherapeutic and MVM. The protein product-free Tris buffers were spiked with MVM, and the MVM elution profile from AEX chromatography was quantitatively analyzed using quantitative polymerase chain reaction (qPCR) for pooled fractions.

View Article and Find Full Text PDF