Publications by authors named "R Mindnich"

The aldo-keto reductase superfamily contains 173 proteins which are present in all phyla. Examination of the human and mouse genomes has identified that in some instances a single AKR gene can give rise to alternatively spliced mRNA variants which in some cases can give rise to more than one protein isoform. This is currently well documented in the AKR6A subfamily which contains the β-subunits of the voltage-gated potassium ion channels.

View Article and Find Full Text PDF

Perakine reductase (PR) catalyzes the NADPH-dependent reduction of the aldehyde perakine to yield the alcohol raucaffrinoline in the biosynthetic pathway of ajmaline in Rauvolfia, a key step in indole alkaloid biosynthesis. Sequence alignment shows that PR is the founder of the new AKR13D subfamily and is designated AKR13D1. The x-ray structure of methylated His(6)-PR was solved to 2.

View Article and Find Full Text PDF

Type 5 17β-hydroxysteroid dehydrogenase (AKR1C3) is the major enzyme in the prostate that reduces 4-androstene-3,17-dione (Δ(4)-Adione) to the androgen receptor (AR) ligand testosterone. AKR1C3 is upregulated in prostate cancer (PCa) and castrate resistant prostate cancer (CRPC) that develops after androgen deprivation therapy. PCa and CRPC often depend on intratumoral androgen biosynthesis and upregulation of AKR1C3 could contribute to intracellular synthesis of AR ligands and stimulation of proliferation through AR signaling.

View Article and Find Full Text PDF

Hydroxysteroid dehydrogenases (HSDs) are involved in metabolism and pre-receptor regulation of steroid hormones. While 17beta-HSDs and 11beta-HSDs are extensively studied in mammals, only few orthologs are characterized in fish. We discovered a novel zebrafish HSD candidate closely related to 17beta-HSD types 3 and 12, which has orthologs in other species.

View Article and Find Full Text PDF