Herein, we describe a solvent-free bioinspired approach for the polymerization of ethylene brassylate. Artificial plant cell walls (APCWs) with an integrated enzyme were fabricated by self-assembly, using microcrystalline cellulose as the main structural component. The resulting APCW catalysts were tested in bulk reactions and reactive extrusion, leading to high monomer conversion and a molar mass of around 4 kDa.
View Article and Find Full Text PDFEthylene brassylate is a renewable macrolactone from castor oil that can be polymerized via ring-opening polymerization (ROP) to obtain a fully biosourced biodegradable polyester. ROP mediated by organometallic catalysts leads to high molar mass poly(ethylene brassylate) (PEB). However, the use of metal-free organocatalysis has several advantages, such as the reduction of toxic and expensive metals.
View Article and Find Full Text PDFQuantifying microplastics (MPs) in marine environments is challenging due to the complexities of differentiation from other materials. This study aims to distinguish petro-sourced plastic microfilaments from organic ones in environmental samples using scanning electron microscope coupled with energy dispersive X-ray (SEM-EDX) analysis. Therefore, 38 particles resembling MPs (PRMPs) from sediments and organisms in Madagascar were analyzed.
View Article and Find Full Text PDFHeat-shrinkable films are widely used as disposable secondary packaging but are conventionally made from fossil-based and nonbiodegradable polyvinyl chloride or polyethylene. To lower the environmental impact of such products, this work reports the development of recyclable, biodegradable, and partially biosourced heat-shrinkable biocomposites that are cost-competitive with existing shrink wraps. Poly(butylene adipate--terephthalate), a growing biodegradable thermoplastic, was simultaneously reinforced with pulp fibers and partially cross-linked in a single-step reactive melt processing.
View Article and Find Full Text PDFThis review introduces groundbreaking insights in polymer science, specifically spotlighting a novel review of the solid-state modification (SSM) approach of thermoplastic polymers, a method not extensively explored. Unlike traditional melt polymer modification, SSM stands out by incorporating monomers or oligomers into the amorphous phase of polymers through innovative exchange reactions. The background of the study places thermoplastics within the context of their increased use over the past century, highlighting their versatility in various applications and the associated environmental and health concerns due to certain additives.
View Article and Find Full Text PDF