Publications by authors named "R Mikhaylovskiy"

Traditionally, magnetic solids are divided into two main classes-ferromagnets and antiferromagnets with parallel and antiparallel spin orders, respectively. Although normally the antiferromagnets have zero magnetization, in some of them an additional antisymmetric spin-spin interaction arises owing to a strong spin-orbit coupling and results in canting of the spins, thereby producing net magnetization. The canted antiferromagnets combine antiferromagnetic order with phenomena typical of ferromagnets and hold great potential for spintronics and magnonics.

View Article and Find Full Text PDF

Excitation with an ultrashort light pulse is arguably the only way to control spins in antiferromagnetic materials at both the nanoscale in space and ultrafast time scale. While recent experiments highlighted tantalising opportunities for spin switching and magnonics in antiferromagnets, the theoretical description of antiferromagnetic spin dynamics driven by strongly localised and ultrashort excitation is in its infancy. Here we report a theoretical model describing the nonlocal and nonlinear spin response to the excitation by light.

View Article and Find Full Text PDF

Understanding how fast short-range interactions build up long-range order is one of the most intriguing topics in condensed matter physics. FeRh is a test specimen for studying this problem in magnetism, where the microscopic spin-spin exchange interaction is ultimately responsible for either ferro- or antiferromagnetic macroscopic order. Femtosecond laser excitation can induce ferromagnetism in antiferromagnetic FeRh, but the mechanism and dynamics of this transition are topics of intense debates.

View Article and Find Full Text PDF