Publications by authors named "R Meskiene"

Enzymatic degradation of plastic pollution offers a promising environmentally friendly waste management strategy, however, suitable biocatalysts must be screened and developed. Traditional screening methods using soluble or solubilised polymers do not necessarily identify enzymes that are effective against solid or crystalline polymers. This study presents a simple, time-saving and cost-effective method for identifying microorganisms and enzymes capable of degrading polymeric films.

View Article and Find Full Text PDF

Cytidine deaminases (CDAs) catalyze the hydrolytic deamination of cytidine and 2'-deoxycytidine to uridine and 2'-deoxyuridine. Here, we report that prokaryotic homo-tetrameric CDAs catalyze the nucleophilic substitution at the fourth position of -acyl-cytidines, -alkyl-cytidines, and -alkyloxycarbonyl-cytidines, and -alkylthio-uridines and -alkyl-uridines, converting them to uridine and corresponding amide, amine, carbamate, thiol, or alcohol as leaving groups. The x-ray structure of a metagenomic CDA_F14 and the molecular modeling of the CDAs used in this study show a relationship between the bulkiness of a leaving group and the volume of the binding pocket, which is partly determined by the flexible β3α3 loop of CDAs.

View Article and Find Full Text PDF

Taste has strong evolutionary basis in the sense of survival by influencing our behavior to obtain food/medicine or avoid poisoning. It is a complex trait and varies among individuals and distinct populations. We aimed to investigate the association between known genetic factors (673 SNPs) and taste preference in the Lithuanian population, as well as to determine a reasonable method for qualitative evaluation of a specific taste phenotype for further genetic analysis.

View Article and Find Full Text PDF

spp. are ubiquitous in nature and are increasingly being recognized as emerging nosocomial pathogens. Nevertheless, to date, only 30 complete genome sequences of phages are available in GenBank, and nearly all of those phages were isolated on .

View Article and Find Full Text PDF

Typical laccases have four copper atoms, which form three different copper centers, of which the T1 copper is responsible for the blue color of the enzyme and gives it a characteristic absorbance around 610 nm. Several laccases have unusual spectral properties and are referred to as yellow or white laccases. Only two yellow laccases from the Ascomycota phylum have been described previously, and only one amino acid sequence of those enzymes is available.

View Article and Find Full Text PDF