Publications by authors named "R Merlos"

Background: Resistance of cancer cells to cytostatics is caused by a number of mechanisms that are often combined. These include reduced cell entry or increased efflux, increased DNA repair, defects of, apoptotic pathways, increased cytostatic degradation as well as elevated levels of intracellular thiols of glutathione and metallothioneins (MT). It has been reported that high concentrations of thiol groups in the cytoplasm bind platinum alkylation derivatives and chemorezistence is due to the transfer of platinum from the cytostatic to MT, which inactivates them.

View Article and Find Full Text PDF

Pharmacokinetics of cisplatin administered by the pulmonary route were established in mice using dry powders inhaler (DPI) formulations showing immediate (F1) and controlled release (CR, solid lipid microparticles) in vitro, without (F2) or with PEGylated excipients (F3, F4). Formulation administration was realized using dry powder blends (correspondingly named thereafter F1 to F4) able to reproducibly deliver particles in vivo using a DP-4M Dry Powder Insufflator™. Their platinum pharmacokinetics were established over 48h in lungs, total blood and non-target organs vs.

View Article and Find Full Text PDF

The present study focuses on the development of dry powders for inhalation as adjuvant chemotherapy in lung cancer treatment. Cisplatin was chosen as a potential candidate for a local treatment as it remains the main platinum component used in conventional chemotherapies, despite its high and cumulative systemic toxicities. Bulk cisplatin was reduced to submicron sizes using high-pressure homogenization, mixed with a solubilized lipid and/or PEGylated component and then spray-dried to produce controlled-release dry powder formulations.

View Article and Find Full Text PDF

Three Itraconazole (ITZ) dry powders for inhalation (DPI) were prepared by spray-drying a mannitol solution in which the ITZ was in suspension (F1) or was in solution without (F2) or with phospholipid (PL) (F3). These powders were endotracheally insufflated in vivo at a single dose of 0.5mg/kg for pharmacokinetic profile (lung and plasma concentration) determination in ICR CD-1 mice.

View Article and Find Full Text PDF

The aim of this study was to evaluate the ability of the Penn-Century Dry Powder Insufflator for mice (DP-4M) to reproducibly, uniformly, and deeply deliver dry powders for inhalation in the mouse lung. Itraconazole-based dry powder formulations produced by spray-drying were different in terms of composition (different ratios of drug and mannitol, with or without phospholipids), but relatively similar in terms of particle size and mass median aerodynamic diameter. The ability of the dry powder insufflator to disaggregate each formulation was the same, indicated by the absence of a statistically significant difference between the particle size distribution parameters, as measured by laser scattering.

View Article and Find Full Text PDF