Objective: Phase-shift contrast agents consist of a liquid perfluorocarbon core that can be vaporized by ultrasound to generate echogenic contrast with excellent spatiotemporal control. The purpose of the present work was to evaluate the in vitro and in vivo behavior of condensed lipid-shelled nanodroplets (NDs) using different analytical procedures.
Methods: Perfluorobutane NDs were prepared by condensation of precursor fluorescently labeled lipid-shelled microbubbles (MBs) and were characterized in terms of size distribution, gas core content and in vitro stability in blood, as well as for their acoustic vaporization behavior using a custom-made setup.
Strong second harmonic generation (SHG) in silicon nitride has been extensively studied-among others, in terms of laser-induced SHG enhancement in SiN waveguides. This enhancement has been ascribed to the all-optical poling induced by the coherent photogalvanic effect. Yet, an analogous process for SiN thin films has not been reported.
View Article and Find Full Text PDFPerfluorocarbon (PFC) droplets are used in acoustic droplet vaporization (ADV), a phenomenon where droplets vaporize into gas microbubbles under exposure to ultrasound. The size and the size distribution of a phase change contrast agent is an important factor in determining the ADV threshold and the biodistribution. Thus, high throughout manufacturing of uniform-sized droplets, required to maintain spatial control of the vaporization process, remains challenging.
View Article and Find Full Text PDFOver the last two decades, liquid perfluorocarbon nanodroplets (PFC-NDs), also known as Phase Change Contrast Agents (PCCAs), that are capable of vaporizing into gaseous echogenic microbubbles via an external stimulus, have gained much attention for diagnostic and therapeutic applications. In the present work, a microfluidic platform is evaluated for the preparation of various size-controlled nanodroplets. Here, two major lines of investigations were carried out.
View Article and Find Full Text PDFThe core Thomson scattering diagnostic (TS) on the COMPASS tokamak was put in operation and reported earlier. Implementation of edge TS, with spatial resolution along the laser beam up to ∼1/100 of the tokamak minor radius, is presented now. The procedure for spatial calibration and alignment of both core and edge systems is described.
View Article and Find Full Text PDF