Publications by authors named "R Megges"

To improve the weak inhibitory effect of 3-oxo-17 alpha-pregna-4,6-diene-21,17-carbolactone (canrenone, II) on Na+/K(+)-ATPase activity in human heart muscle, we have investigated the impact of hydrogenation, reduction, glycosidation, and the introduction of a 3-sulfonamido residue on the inhibitory potency of canrenone. The greatest increase in potency (> 20 times) was found for 3 beta-(alpha-L-rhamnopyranosyloxy)-5 beta, 17 alpha-pregnane-21, 17-carbolactone (IX). The 3-O-glycosides IX-XI are the first representatives of C/D-trans steroids with effector-receptor complex decay half-times longer than those of therapeutically used cardenolides.

View Article and Find Full Text PDF

3-Oxo-17 alpha-pregna-4,6-diene-21,17-carbolactone (canrenone, II) is produced from the potassium salt of 17-hydroxy-3-oxo-17 alpha-pregna-4,6-diene-21-carboxylic acid (I) by acid catalyzed lactonization. II reacts with acetic anhydride/nitric acid to give one main product (III) and some minor products. The structure of III was determined by chemical and spectral analysis to the 4-nitro derivative of canrenone.

View Article and Find Full Text PDF

Based on the knowledge that the digitalis receptor site in Na+/K(+)-ATPase is the interface between two interacting alpha-subunits of the protodimer (alpha beta)2, the present review makes an approach towards modeling the three-dimensional structure of the digitalis intercalating matrix by exploiting the information on: the primary structure and predicted membrane topology of the catalytic alpha-subunit; the determinants of the secondary, tertiary and quaternary structure of the membrane-spanning protein domains; the impact of mutational amino acid substitutions on the affinity of digitalis compounds, and the structural characteristics in potent representatives. The designed model proves its validity by allowing quantitative interpretations of the contributions of distinct amino acid side chains to the special bondings of the three structural elements of digitalis compounds.

View Article and Find Full Text PDF