Publications by authors named "R Mattioli"

Antibiotic resistance poses a serious threat to the current healthcare system, negatively impacting the effectiveness of many antimicrobial treatments. The situation is exacerbated by the widespread overuse and abuse of available antibiotics, accelerating the evolution of resistance. Thus, there is an urgent need for novel approaches to therapy to overcome established resistance mechanisms.

View Article and Find Full Text PDF

Topical application of the glucocorticoid betamethasone (BM) is a common treatment for inflammatory-related skin diseases, such as psoriasis. However, enhancing its bioavailability remains challenging due to poor skin permeability. Herein, we developed and evaluated hyaluronan-cholesterol (HACH) based nanohydrogel systems (NHs) and NHs-Carbopol formulation for dermal delivery of BM.

View Article and Find Full Text PDF
Article Synopsis
  • * Traditional methods of extracting these compounds are difficult and harmful to the environment, leading to the development of a new aqueous extraction method that transforms them into water-soluble derivatives called thiocanthal and thiocanthol.
  • * Thiocanthal and thiocanthol have been shown to have an anti-inflammatory effect greater than ibuprofen and may offer a new avenue for creating safer non-steroidal anti-inflammatory drugs (NSAIDs).
View Article and Find Full Text PDF

Chitin-derived furans offer a sustainable alternative feedstock for nitrogen appended aromatic compounds. Herein, we address the challenge of using chitin-derived furans, 3-acetamido-5-acetylfuran (3A5AF) and 3-acetamido-5-furfural aldehyde (3A5F), to favour the formation of exo Diels-Alder adducts and 4-acetylaminophthalimides respectively, using a mechanochemical ball-milling technique. Mechanochemical activation is explored through the synthesis of 7-oxa-norbornene backbones with novel substitution pattern from 3A5AF in yields up to 77 % and improved exo:endo selectivity compared to solution-phase reactions.

View Article and Find Full Text PDF

Polyamines are involved in several plant physiological processes. In Arabidopsis thaliana, five FAD-dependent polyamine oxidases (AtPAO1 to AtPAO5) contribute to polyamine homeostasis. AtPAO5 catalyzes the back-conversion of thermospermine (T-Spm) to spermidine and plays a role in plant development, xylem differentiation, and abiotic stress tolerance.

View Article and Find Full Text PDF