Acute respiratory distress syndrome (ARDS) is a severe lung condition without targeted therapy that is characterized by the disruption of epithelial and endothelial barriers. The role of the tight junction protein occludin in the pathogenesis of this disease is unknown, although it has previously been deemed redundant in some tissues. The aim of the present study is to determine whether occludin is required for lung function by controlling alveolar barrier integrity in mouse models.
View Article and Find Full Text PDFRationale: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease that has no cure. Many current research efforts center on diagnostic and therapeutic modalities for IPF while other risk factors affecting disease pathogenesis receive less attention. Emerging data support the clinical importance of weight loss in patients with IPF.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a progressive, chronic, interstitial lung disease with a poor prognosis. Although specific anti-fibrotic medications are now available, the median survival time following diagnosis remains very low, and new therapies are urgently needed. To uncover novel therapeutic targets, we examined how biochemical properties of the fibrotic lung are different from the healthy lung.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a disease characterized by irreversible lung scarring. The pathophysiology is not fully understood, but the working hypothesis postulates that a combination of epithelial injury and myofibroblast differentiation drives progressive pulmonary fibrosis. We previously demonstrated that a reduction in extracellular pH activates latent TGF-β1, and that TGF-β1 then drives its own activation, creating a feed-forward mechanism that propagates myofibroblast differentiation.
View Article and Find Full Text PDFTransforming growth factor beta (TGF-β) induced myofibroblast differentiation is central to the pathological scarring observed in Idiopathic Pulmonary Fibrosis (IPF) and other fibrotic diseases. Our lab has recently identified expression of GPR68 (Ovarian Cancer Gene Receptor 1, OGR1), a pH sensing G-protein coupled receptor, as a negative regulator of TGF-β induced profibrotic effects in primary human lung fibroblasts (PHLFs). We therefore hypothesized that small molecule activators of GPR68 would inhibit myofibroblast differentiation.
View Article and Find Full Text PDF