Publications by authors named "R Mastria"

Perovskite crystals-with their exceptional nonlinear optical properties, lasing and waveguiding capabilities-offer a promising platform for integrated photonic circuitry within the strong-coupling regime at room temperature. Here we demonstrate a versatile template-assisted method to efficiently fabricate large-scale waveguiding perovskite crystals of arbitrarily predefined geometry such as microwires, couplers and splitters. We non-resonantly stimulate a condensate of waveguided exciton-polaritons resulting in bright polariton lasing from the transverse interfaces and corners of our perovskite microstructures.

View Article and Find Full Text PDF

The realization of efficient optical devices depends on the ability to harness strong nonlinearities, which are challenging to achieve with standard photonic systems. Exciton-polaritons formed in hybrid organic-inorganic perovskites offer a promising alternative, exhibiting strong interactions at room temperature (RT). Despite recent demonstrations showcasing a robust nonlinear response, further progress is hindered by an incomplete understanding of the microscopic mechanisms governing polariton interactions in perovskite-based strongly coupled systems.

View Article and Find Full Text PDF

Layered perovskites, a novel class of two-dimensional (2D) layered materials, exhibit versatile photophysical properties of great interest in photovoltaics and optoelectronics. However, their instability to environmental factors, particularly water, has limited their utility. In this study, we introduce an innovative solution to the problem by leveraging the unique properties of natural beeswax as a protective coating of 2D-fluorinated phenylethylammonium lead iodide perovskite.

View Article and Find Full Text PDF

Room temperature (RT) polariton condensate holds exceptional promise for revolutionizing various fields of science and technology, encompassing optoelectronics devices to quantum information processing. Using perovskite materials, like all-inorganic cesium lead bromide (CsPbBr) single crystal, provides additional advantages, such as ease of synthesis, cost-effectiveness, and compatibility with existing semiconductor technologies. In this work, the formation of whispering gallery modes (WGM) in CsPbBr single crystals with controlled geometry is shown, synthesized using a low-cost and efficient capillary bridge method.

View Article and Find Full Text PDF

Exciton-polaritons derived from the strong light-matter interaction of an optical bound state in the continuum with an excitonic resonance can inherit an ultralong radiative lifetime and significant nonlinearities, but their realization in two-dimensional semiconductors remains challenging at room temperature. Here we show strong light-matter interaction enhancement and large exciton-polariton nonlinearities at room temperature by coupling monolayer tungsten disulfide excitons to a topologically protected bound state in the continuum moulded by a one-dimensional photonic crystal, and optimizing for the electric-field strength at the monolayer position through Bloch surface wave confinement. By a structured optimization approach, the coupling with the active material is maximized here in a fully open architecture, allowing to achieve a 100 meV photonic bandgap with the bound state in the continuum in a local energy minimum and a Rabi splitting of 70 meV, which results in very high cooperativity.

View Article and Find Full Text PDF