De novo mutations (DNMs), including germinal and postzygotic mutations (PZMs), are a strong source of causality for Autism Spectrum Disorder (ASD). However, the biological processes involved behind them remain unexplored. Our aim was to detect DNMs (germinal and PZMs) in a Spanish ASD cohort (360 trios) and to explore their role across different biological hierarchies (gene, biological pathway, cell and brain areas) using bioinformatic approaches.
View Article and Find Full Text PDFAutism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction, executive functioning, sensory-perceptual abilities and behaviour, such as anxious/depressed states, attention problems, aggression, or somatic complains. However, the dynamic relationship between these dimensions remains to be addressed. Therefore, we explored the link between executive functions, sensory processing and behaviour in 79 children and adolescents with ASD.
View Article and Find Full Text PDFSCA36 is an autosomal dominant spinocerebellar ataxia (SCA) affecting many families from Costa da Morte, a northwestern region of Spain. It is caused by an intronic GGCCTG repeat expansion in NOP56. In order to characterize the cognitive and affective manifestations of this cerebellar disease, a group of 30 SCA36 mutation carriers (11 preataxic and 19 ataxic patients) were assessed with a comprehensive battery of standardized tests.
View Article and Find Full Text PDFAbnormal patterns of touch processing have been linked to core symptoms in ASD. This study examined the relation between tactile processing patterns and social problems in 44 children and adolescents with ASD, aged 6-14 (M = 8.39 ± 2.
View Article and Find Full Text PDFBackground: The spinocerebellar ataxias (SCAs) form a clinically, genetically, and pathological heterogeneous group of autosomal-dominant degenerative diseases. In particular, SCA36 is characterized by a late-onset, slowly progressive cerebellar syndrome typically associated with sensorineural hearing loss. This study was aimed at analyzing the neurodegenerative process underlying SCA36 through fluorodeoxyglucose positron emission tomography (FDG-PET) and MRI scans.
View Article and Find Full Text PDF