In the field of computational chemistry, computer models are quickly and cheaply constructed to predict toxicology hazards and results, with no need for test material or animals as these computational predictions are often based on physicochemical properties of chemical structures. Multiple methodologies are employed to support in silico assessments based on machine learning (ML) and deep learning (DL). This review introduces the development of computational toxicology, focusing on ML and DL and emphasizing their importance in the field of toxicology.
View Article and Find Full Text PDFCurrently, the development of resistance of bacteria is one of the most important health problems worldwide. Consequently, there is a growing urge for finding new compounds with antibacterial activity. Furthermore, it is very important to find antibacterial compounds with a good pharmacokinetic profile too, which will lead to more efficient and safer drugs.
View Article and Find Full Text PDFThe variability of methicillin-resistant (MRSA), its rapid adaptive response against environmental changes, and its continued acquisition of antibiotic resistance determinants have made it commonplace in hospitals, where it causes the problem of multidrug resistance. In this study, we used molecular topology to develop several discriminant equations capable of classifying compounds according to their anti-MRSA activity. Topological indices were used as structural descriptors and their relationship with anti-MRSA activity was determined by applying linear discriminant analysis (LDA) on a group of quinolones and quinolone-like compounds.
View Article and Find Full Text PDFIn this study, molecular topology was used to develop several discriminant equations capable of classifying compounds according to their antibacterial activity. Topological indices were used as structural descriptors and their relation to antibacterial activity was determined by applying linear discriminant analysis (LDA) on a group of quinolones and quinolone-like compounds. Four equations were constructed, named DF1, DF2, DF3, and DF4, all with good statistical parameters such as Fisher-Snedecor's F (over 25 in all cases), Wilk's lambda (below 0.
View Article and Find Full Text PDFIn this paper, a Multilinear Regression (MLR) analysis has been carried out in order to accurately predict physicochemical properties and biological activities of a group of antibacterial quinolones by means of a set of structural descriptors called topological indices. The aim of this work is to develop prediction equations for these properties after collecting the maximum number of data from the literature on antibacterial quinolones. The five regression functions selected by presenting the best combination of various statistical parameters, subsequently validated by means of internal validation (intercorrelation, Y-randomization and leave-one-out cross-validation tests), allowed the reliable prediction of minimum inhibitory concentration 50 versus Staphylococcus aureus (MIC50Sa), Streptococcus pyogenes (MIC50Spy) and Bacteroides fragilis (MIC50Bf), Mean Residence Time (MRT) after oral administration and volume of distribution (VD).
View Article and Find Full Text PDF