In forested ecosystems, shrubs must succeed in persisting in low-light environments, while simultaneously having the ability to rapidly expand and occupy newly created canopy openings, yet little is known about the traits that make this possible. We hypothesize that shrub species that are abundant in the understory exhibit a specific set of functional traits that define their ability to persist during unfavorable periods and to rapidly exploit newly created habitats. We tested this by comparing field-measured functional traits such as biomass allocation, leaf display, crown morphology, and leaf traits, across individual size classes and two gap-forest environments of five shrub species.
View Article and Find Full Text PDFImportance: Evidence regarding corticosteroid use for severe coronavirus disease 2019 (COVID-19) is limited.
Objective: To determine whether hydrocortisone improves outcome for patients with severe COVID-19.
Design, Setting, And Participants: An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin.
Background And Purpose: Voltage-gated sodium channels (Na(V) channels) are key players in the generation and propagation of action potentials, and selective blockade of these channels is a promising strategy for clinically useful suppression of electrical activity. The conotoxin µ-CnIIIC from the cone snail Conus consors exhibits myorelaxing activity in rodents through specific blockade of skeletal muscle (Na(V) 1.4) Na(V) channels.
View Article and Find Full Text PDFBackground And Purpose: The µ-conopeptide family is defined by its ability to block voltage-gated sodium channels (VGSCs), a property that can be used for the development of myorelaxants and analgesics. We characterized the pharmacology of a new µ-conopeptide (µ-CnIIIC) on a range of preparations and molecular targets to assess its potential as a myorelaxant.
Experimental Approach: µ-CnIIIC was sequenced, synthesized and characterized by its direct block of elicited twitch tension in mouse skeletal muscle and action potentials in mouse sciatic and pike olfactory nerves.
Large-conductance Ca(2+) -activated (BK) potassium channels are centrally involved in neurovascular coupling, immunity, and neural transmission. The ability to be synergistically activated by membrane depolarization, different ligands and intracellular Ca(2+) links intracellular signaling and membrane excitability. The diverse physiological functions of BK channels crucially depend on regulatory β subunits.
View Article and Find Full Text PDF