GAC filtration of municipal wastewater was optimized and intensified, making its implementation and operation directly after secondary clarification possible and relevant. GAC was first selected based on laboratory tests. Performances on organic micropollutants were linked to the repartition of BET surface between micropores and meso/macropores.
View Article and Find Full Text PDFAn MBR treating filtrate from sludge ultra-dewatering (FSD) was studied to evaluate the real applicability to concentrated effluents. The MBR operation is comparable to conventional wastewater MBRs in terms of F/M and nitrogen to sludge ratios, SRT and MLSS in biological tanks. On the contrary, the volume treated is lower with a comparable pollution load, the effluent being concentrated in nitrogen and carbon.
View Article and Find Full Text PDFThis paper analyzes the fate of 71 priority and emerging organic contaminants all along the treatment trains of sewage sludge treatment facilities in Paris including dewatering by centrifugation, thermal drying and anaerobic digestion. It aimed at proposing and applying a mass balances calculation methodology to each process and pollutant. This data validation strategy demonstrated the complexity to perform representative inlet/outlet sampling and analysis campaigns at industrial scales regarding organic compounds and to propose options to overcome this issue.
View Article and Find Full Text PDFThe fate of pathogen indicators (Escherichia coli - EC, intestinal enterococci - IE, RNA-F bacteriophages and spores of sulfite reducing bacteria - SSR) was extensively studied in Parisian large-scale wastewater treatment plants (WWTPs), based on conventional activated sludge, biofiltration or membrane bioreactor (MBR) processes. Between 14 and 87 campaigns were performed between 2014 and 2018 in five WWTPs. High removals of 3 log for both EC and IE, and lower removals of 1-2 log for SSR and RNA-F bacteriophages, were observed in conventional activated sludge and biofiltration WWTPs.
View Article and Find Full Text PDFMonitoring the removal of organic micropollutants (OMPs) in advanced wastewater treatment facilities requires expensive and time-consuming analytical methods that cannot be installed online. Spectroscopic techniques such as fluorescence excitation/emission spectroscopy were demonstrated to offer the potential for monitoring OMPs removal in conventional wastewater treatment plants or ozonation pilots but their application to activated carbon (AC) adsorption processes was only investigated at lab scale and not in real treatment facilities. In this study, indexes from fluorescence emission/excitation matrices (EEMs) were used to find correlations with the removal of 28 OMPs from a large-scale AC pilot in fluidized bed employed for wastewater advanced treatment, as well as from batch experiments.
View Article and Find Full Text PDF