Publications by authors named "R Maget-Dana"

We compared the properties of two peptides of identical size and amino acid composition, Ac-(LKKL)(5)-NHEt and Ac-(KL)(10)-NHEt. Both are amphipathic, but only Ac-(LKKL)(5)-NHEt is a potent promoter of negative curvature. CD studies performed in the presence of lipids confirmed that under these conditions Ac-(LKKL)(5)-NHEt forms an alpha-helix, and Ac-(KL)(10)-NHEt adopts a beta structure.

View Article and Find Full Text PDF

The antifungal peptide named chromofungin is the most active vasostatin-I-derived peptide, corresponding to the sequence 47-66 of chromogranin A. (1)H-NMR analysis revealed that it adopts a helical structure. The mechanism implicated in the interaction of chromofungin with fungi and yeast cells was studied by penetration of monolayers and confocal laser microscopy.

View Article and Find Full Text PDF

The ability of phosphatidylethanolamine-binding protein (PEBP) to bind membranes was tested by using small and large unilamellar vesicles and monolayers composed of l-alpha-1,2-dimyristoylphosphatidylcholine, l-alpha-1,2-dimyristoylphosphatidylglycerol and l-alpha-1,2-dimyristoylphosphatidylethanolamine. PEBP only bound to model membranes containing l-alpha-1,2-dimyristoylphosphatidylglycerol; the interaction was primarily due to electrostatic forces between the basic protein and the acidic phospholipids. Further experiments indicated that the interaction was not dependent on the length and unsaturation of the phospholipid acyl chains and was not modified by the presence of cholesterol in the membrane.

View Article and Find Full Text PDF

Vasostatin-I, the natural fragment of chromogranin A-(1-76), is a neuropeptide able to kill a large variety of fungi and yeast cells in the micromolar range. We have examined the antifungal properties of synthetic vasostatin-I-related peptides. The most active shortest peptide, named chromofungin, corresponds to the sequence Arg(47)-Leu(66).

View Article and Find Full Text PDF