Publications by authors named "R MENDEZ"

Virtually all mRNAs acquire a poly(A) tail co-transcriptionally, but its length is dynamically regulated in the cytoplasm in a transcript-specific manner. The length of the poly(A) tail plays a crucial role in determining mRNA translation, stability, and localization. This dynamic regulation of poly(A) tail length is widely used to create post-transcriptional gene expression programs, allowing for precise temporal and spatial control.

View Article and Find Full Text PDF

RNA-sequencing has improved the diagnostic yield of individuals with rare diseases. Current analyses predominantly focus on identifying outliers in single genes that can be attributed to cis-acting variants within or near that gene. This approach overlooks causal variants with trans-acting effects on splicing transcriptome-wide, such as variants impacting spliceosome function.

View Article and Find Full Text PDF
Article Synopsis
  • Respiratory diseases and cardiovascular diseases (CVDs) often share common risk factors, like aging and smoking, and their relationship can impact the prognosis of each condition.
  • The interactions between these diseases involve shared mechanisms such as inflammation, oxidative stress, and microvascular dysfunction, which can exacerbate both respiratory and cardiovascular issues.
  • Understanding the coexistence of these diseases is crucial for adjusting treatment plans and improving overall patient outcomes.
View Article and Find Full Text PDF

Introduction: The Spanish Society of Pulmonology and Thoracic Surgery created a registry for hospitalised patients with COVID-19 and the different types of respiratory support used (RECOVID). Objectives. To describe the profile of hospitalised patients with COVID-19, comorbidities, respiratory support treatments and setting.

View Article and Find Full Text PDF

The development of highly potent and selective μ opioid receptor (MOR) modulators with favorable drug-like properties has always been a focus in the opioid domain. Our previous efforts led to the discovery of a lead compound designated as NAT, a potent centrally acting MOR modulator. However, the fact that NAT precipitated considerable withdrawal effects at higher doses largely impaired its further development.

View Article and Find Full Text PDF