Roots optimize the acquisition of limited soil resources, but relationships between root forms and functions have often been assumed rather than demonstrated. Furthermore, how root systems co-specialize for multiple resource acquisitions is unclear. Theory suggests that trade-offs exist for the acquisition of different resource types, such as water and certain nutrients.
View Article and Find Full Text PDFWireless Underground Sensor Networks (WUSNs) that collect geospatial in situ sensor data are a backbone of internet-of-things (IoT) applications for agriculture and terrestrial ecology. In this paper, we first show how WUSNs can operate reliably under field conditions year-round and at the same time be used for determining and mapping soil conditions from the buried sensor nodes. We demonstrate the design and deployment of a 23-node WUSN installed at an agricultural field site that covers an area with a 530 m radius.
View Article and Find Full Text PDFLarge stocks of soil organic carbon (SOC) have accumulated in the Northern Hemisphere permafrost region, but their current amounts and future fate remain uncertain. By analyzing dataset combining >2700 soil profiles with environmental variables in a geospatial framework, we generated spatially explicit estimates of permafrost-region SOC stocks, quantified spatial heterogeneity, and identified key environmental predictors. We estimated that Pg C are stored in the top 3 m of permafrost region soils.
View Article and Find Full Text PDF