Publications by authors named "R M Tujebajeva"

Selenocysteine is incorporated into proteins via "recoding" of UGA from a stop codon to a sense codon, a process that requires specific secondary structures in the 3' untranslated region, termed selenocysteine incorporation sequence (SECIS) elements, and the protein factors that they recruit. Whereas most selenoprotein mRNAs contain a single UGA codon and a single SECIS element, selenoprotein P genes encode multiple UGAs and two SECIS elements. We have identified evolutionary adaptations in selenoprotein P genes that contribute to the efficiency of incorporating multiple selenocysteine residues in this protein.

View Article and Find Full Text PDF

The mechanism of selenocysteine incorporation in eukaryotes has been assumed for almost a decade to be inherently different from that in prokaryotes, due to differences in the architecture of selenoprotein mRNAs in the two kingdoms. After extensive efforts in a number of laboratories spanning the same time frame, some of the essential differences between these mechanisms are finally being revealed, through identification of the factors catalyzing cotranslational selenocysteine insertion in eukaryotes. A single factor in prokaryotes recognizes both the selenoprotein mRNA, via sequences in the coding region, and the unique selenocysteyl-tRNA, via both its secondary structure and amino acid.

View Article and Find Full Text PDF

Termination of translation in eukaryotes is catalyzed by eRF1, the stop codon recognition factor, and eRF3, an eRF1 and ribosome-dependent GTPase. In selenoprotein mRNAs, UGA codons, which typically specify termination, serve an alternate function as sense codons. Selenocysteine incorporation involves a unique tRNA with an anticodon complementary to UGA, a unique elongation factor specific for this tRNA, and cis-acting secondary structures in selenoprotein mRNAs, termed SECIS elements.

View Article and Find Full Text PDF

Decoding UGA as selenocysteine requires a unique tRNA, a specialized elongation factor, and specific secondary structures in the mRNA, termed SECIS elements. Eukaryotic SECIS elements are found in the 3' untranslated region of selenoprotein mRNAs while those in prokaryotes occur immediately downstream of UGA. Consequently, a single eukaryotic SECIS element can serve multiple UGA codons, whereas prokaryotic SECIS elements only function for the adjacent UGA, suggesting distinct mechanisms for recoding in the two kingdoms.

View Article and Find Full Text PDF