Publications by authors named "R M Tromp"

Energy-Dispersive X-Ray Spectroscopy (EDS) is a technique frequently used in Scanning and Transmission Electron Microscopes to study the elemental composition of a sample. Briefly, high energy electrons of the incident electron beam may ionize an electron from a core shell. The decay of this excited state may result in the emission of a characteristic X-ray photon or Auger-Meitner electron.

View Article and Find Full Text PDF

Detailing the physical basis of neural circuits with large-volume serial electron microscopy (EM), 'connectomics', has emerged as an invaluable tool in the neuroscience armamentarium. However, imaging synaptic resolution connectomes is currently limited to either transmission electron microscopy (TEM) or scanning electron microscopy (SEM). Here, we describe a third way, using photoemission electron microscopy (PEEM) which illuminates ultra-thin brain slices collected on solid substrates with UV light and images the photoelectron emission pattern with a wide-field electron microscope.

View Article and Find Full Text PDF

A new, complementary technique based on Photo Emission Electron Microscopy (PEEM) is demonstrated. In contrast to PEEM, the sample is placed on a transparent substrate and is illuminated from the back side while electrons are collected from the other (front) side. In this paper, the working principle of this technique, coined back-illuminated PEEM (BIPEEM), is described.

View Article and Find Full Text PDF

We describe a cryogenic sample chamber for low energy electron microscopy (LEEM), and present first experimental results. Modifications to our IBM/SPECS aberration-corrected LEEM instrument are presented first. These include incorporation of mechanisms for cooling the sample and its surroundings, and reduction of various sources of heat load.

View Article and Find Full Text PDF

The LEEM-IV spectra of few-layer graphene show characteristic minima at specific energies, which depend on the number of graphene layers. For the same samples, low-energy TEM (eV-TEM) spectra exhibit transmission maxima at energies corresponding to those of the reflection minima in LEEM. Both features can be understood from interferences of the electron wave function in a purely elastic model.

View Article and Find Full Text PDF