Publications by authors named "R M P Breedijk"

The long-lived green luminescence of human bone (that has been heated to 600 °C for a short duration) is attributed to a carbon quantum dot material (derived from collagen) encapsulated and protected by an inorganic matrix (derived from bone apatite) and is more intense in dense rigid and crystalline parts of (healthy) human bones. The strong collagen-apatite interaction results (upon decomposition) in a protective inorganic environment of the luminescent centers allowing long-lived triplet-based emission of a carbon (quantum) dot-like material at room temperature, as well as resilience against oxidation between 550 and 650 °C. The graphitic black phase (obtained upon heating around 400 °C) is a precursor to the luminescent carbon-based material, that is strongly interacting with the crystalline inorganic matrix.

View Article and Find Full Text PDF

Spores of the bacterium can cause disease in humans due to contamination of raw materials for food manufacturing. These dormant, resistant spores can survive for years in the environment, but can germinate and grow when their surroundings become suitable, and spore germination proteins play an important role in the decision to germinate. Since germinated spores have lost dormant spores' extreme resistance, knowledge about the formation and function of germination proteins could be useful in suggesting new preservation strategies to control spores.

View Article and Find Full Text PDF

Time-lapse fluorescence imaging of live cells at super-resolution remains a challenge, especially when the photon budget is limited. Current super-resolution techniques require either the use of special exogenous probes, high illumination doses or multiple image acquisitions with post-processing or combinations of the aforementioned. Here, we describe a new approach by combining annular illumination with rescan confocal microscopy.

View Article and Find Full Text PDF

The new high-sensitive and high-resolution technique, Re-scan Confocal Microscopy (RCM), is based on a standard confocal microscope extended with a re-scan detection unit. The re-scan unit includes a pair of re-scanning mirrors that project the emission light onto a camera in a scanning manner. The signal-to-noise ratio of Re-scan Confocal Microscopy is improved by a factor of 4 compared to standard confocal microscopy and the lateral resolution of Re-scan Confocal Microscopy is 170 nm (compared to 240 nm for diffraction limited resolution, 488 nm excitation, 1.

View Article and Find Full Text PDF

Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial resolution and signal-to-noise ratio, are characterized and compared with properties of standard confocal microscopy. The results show that the lateral resolution of RCM is ~170 nm compared to ~240 nm of confocal microscopy for 488 nm excitation and 1.

View Article and Find Full Text PDF