J Aquat Anim Health
December 2019
The ingestion of infected prey is the most recognizable mode of transmission for Ichthyophonus, but because this mode of transmission is unidirectional from small prey fish to larger predators, it cannot sustain the parasite within or among populations nor does it explain transmission to planktivores. Recently, waterborne transmission was demonstrated in cultured Rainbow Trout Oncorhynchus mykiss, which could explain how the parasite is transmitted without piscivory. However, it is possible that this is an adaptation to aquaculture conditions, and may not occur among wild fish.
View Article and Find Full Text PDFOther than the initial infectious cell, schizonts are the only stage of the parasite Ichthyophonus sp. that has been identified in the tissues of a living host, and they are known to initiate new infections when ingested by a suitable host. However, after feeding Ichthyophonus-infected tissue to Rainbow Trout Oncorhynchus mykiss, we observed that once infection was initiated, some schizonts proceeded to develop into several other morphologic forms indistinguishable from those previously described from recently deceased hosts, decomposing infected corpses, and in vitro culture.
View Article and Find Full Text PDFThe precise nature of Ichthyophonus sp. transmission among wild fishes has eluded description for over a century. Transmission among piscivores is direct, via ingestion of infected prey, but there is also evidence for waterborne transmission between infected and uninfected individuals.
View Article and Find Full Text PDFThis study describes the effect of increasing exposure dose on Ichthyophonus prevalence and infection intensity in experimentally infected rainbow trout, Oncorhynchus mykiss. Specific-pathogen free trout were exposed per os to increasing numbers of Ichthyophonus schizonts obtained from naturally infected donor fish, then sampled after 30 and 60 days post-exposure. Both in vitro explant culture and histology revealed that as the number of schizonts per dose increased there was a proportionate increase in the number of infected fish, as well as an increase in the number of infected organs; parasite density in individual infected organs also increased with dose.
View Article and Find Full Text PDFIchthyophonus-infected Pacific herring, Clupea pallasii , were allowed to decompose in ambient seawater then serially sampled for 29 days to evaluate parasite viability and infectivity for Pacific staghorn sculpin, Leptocottus armatus . Ichthyophonus sp. was viable in decomposing herring tissues for at least 29 days post-mortem and could be transmitted via ingestion to sculpin for up to 5 days.
View Article and Find Full Text PDF