Natural electric fields exist throughout the body during development and following injury, and, as such, EFs have the potential to be utilized to guide cell growth and regeneration. Electrical stimulation (ES) can also affect gene expression and other cellular behaviors, including cell migration and proliferation. To investigate the effects of electric fields on cells in vitro, a sterile chamber that delivers electrical stimuli is required.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common form of dementia, accounting for approximately 38.5 million cases of all-cause dementia. Over 60% of these individuals live in low- and middle-income countries and are the worst affected, especially by its deleterious effects on the productivity of both patients and caregivers.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a chronic neurodegenerative disorder that is accompanied by deficits in memory and cognitive functions. The disease is pathologically characterised by the accumulation and aggregation of an extracellular peptide referred to as amyloid-β (Aβ) in the form of amyloid plaques and the intracellular aggregation of a hyperphosphorelated protein tau in the form of neurofibrillary tangles (NFTs) that cause neuroinflammation, synaptic dysfunction, and oxidative stress. The search for pathomechanisms leading to disease onset and progression has identified many key players that include genetic, epigenetic, behavioural, and environmental factors, which lend support to the fact that this is a multi-faceted disease where failure in various systems contributes to disease onset and progression.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2023
The limited expression of neurotrophic factors that can be included in neural tissue engineering scaffolds is insufficient for sustained neural regeneration. A localized and sustained method of introducing neurotrophic factors is required. We describe our attempt at inducing neuroblastoma cells to express trophic factors following electrical stimulation.
View Article and Find Full Text PDFCarnosic acid is a diterpenoid abundantly present in plants belonging to the genus and of the family accounting for their application in traditional medicine. The diverse biological properties of carnosic acid that include antioxidant, anti-inflammatory, and anticarcinogenic activities have instigated studies on its mechanistic role, providing further insights into its potential as a therapeutic agent. Accumulating evidence has established the relevance of carnosic acid as a neuroprotective agent exhibiting therapeutic efficacy in combatting neuronal-injury-induced disorders.
View Article and Find Full Text PDF