A compilation of factors over the past decade-including the availability of increasingly large and rich healthcare datasets, advanced technologies to extract unstructured information from health records and digital sources, advancement of principled study design and analytic methods to emulate clinical trials, and frameworks to support transparent study conduct-has ushered in a new era of real-world evidence (RWE). This review article describes the evolution of the RWE era, including pharmacoepidemiologic methods designed to support causal inferences regarding treatment effects, the role of regulators and other health authorities in establishing distributed real-world data networks enabling analytics at scale, and the many global guidance documents on principled methods of producing RWE. This article also highlights the growing opportunity for RWE to support decision making by regulators, health technology assessment groups, clinicians, patients, and other stakeholders and provides examples of influential RWE studies.
View Article and Find Full Text PDFCell microencapsulation technologies allow non-autologous implantation of therapeutic cells for sustained drug delivery purposes. The perm-selective membrane of these systems provides resistance to rupture, stablishes the upper molecular weight limit in bidirectional diffusion of molecules, and affects biocompatibility. Thus, despite being a decisive factor to succeed in terms of biosafety and therapeutic efficacy, little progress has been made in its optimization so far.
View Article and Find Full Text PDFObjective: Extremely premature infants are treated with acetaminophen (APAP) for pain and patent ductus arteriosus. High doses of APAP in adults are toxic, and a recent study found an association between APAP metabolite levels in mothers' breast milk and both bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP) in their premature infants. In this study, we determined levels of APAP metabolites in urine of infants at high risk for BPD and ROP.
View Article and Find Full Text PDFRadiopharmaceutical therapy (RPT) enhances tumor response to immune checkpoint inhibitors (ICI) in preclinical models, but the effects of different radioisotopes have not been thoroughly compared. To evaluate mechanisms of response to RPT+ICI, we used NM600, an alkylphosphocholine selectively taken up by most tumors. Effects of Y-, Lu-, and Ac-NM600 + ICIs were compared in syngeneic murine models, B78 melanoma (poorly immunogenic) and MC38 colorectal cancer (immunogenic).
View Article and Find Full Text PDF