Publications by authors named "R M H W Hogers"

Genes of the family PHOSPHATIDYLETHANOLAMINE-BINDING PROTEINS (PEBP) have been intensely studied in plants for their role in cell (re)programming and meristem differentiation. Recently, sporadic reports of the presence of a new type of PEBP in plants became available, highly similar to the YY-PEBPs of prokaryotes. A comprehensive investigation of their spread, origin, and function revealed conservation across the plant kingdom.

View Article and Find Full Text PDF

Coercive mating is a sexual selection strategy that is likely to influence female cognition. Female harassment levels have been linked to altered brain gene expression patterns and brain size evolution, suggesting females may respond to coercive mating by investing energy into "outsmarting" males. However, females exposed to coercive males have decreased foraging efficiency and likely increased stress levels, suggesting their brain function might instead be impaired.

View Article and Find Full Text PDF

In plant breeding the use of molecular markers has resulted in tremendous improvement of the speed with which new crop varieties are introduced into the market. Single Nucleotide Polymorphism (SNP) genotyping is routinely used for association studies, Linkage Disequilibrium (LD) and Quantitative Trait Locus (QTL) mapping studies, marker-assisted backcrosses and validation of large numbers of novel SNPs. Here we present the KeyGene SNPSelect technology, a scalable and flexible multiplexed, targeted sequence-based, genotyping solution.

View Article and Find Full Text PDF

Conventional marker-based genotyping platforms are widely available, but not without their limitations. In this context, we developed Sequence-Based Genotyping (SBG), a technology for simultaneous marker discovery and co-dominant scoring, using next-generation sequencing. SBG offers users several advantages including a generic sample preparation method, a highly robust genome complexity reduction strategy to facilitate de novo marker discovery across entire genomes, and a uniform bioinformatics workflow strategy to achieve genotyping goals tailored to individual species, regardless of the availability of a reference sequence.

View Article and Find Full Text PDF

Reverse genetics approaches rely on the detection of sequence alterations in target genes to identify allelic variants among mutant or natural populations. Current (pre-) screening methods such as TILLING and EcoTILLING are based on the detection of single base mismatches in heteroduplexes using endonucleases such as CEL 1. However, there are drawbacks in the use of endonucleases due to their relatively poor cleavage efficiency and exonuclease activity.

View Article and Find Full Text PDF