The study of controlling the morphology for designing advanced supramolecular architectures by tuning the molecular motif at the elemental level has been rarely carried out. Here, we report the synthesis of a nicotinic acid-conjugated selenopeptide, which induced the formation of an unbranched mesoscale elongated tubular morphology. We rationally designed two additional peptides to find out the decisive role played by the nitrogen atom (in nicotinic acid) and selenium (in the peptide backbone) toward the formation of the mesotube.
View Article and Find Full Text PDFObjectives: To document the auditory processing, visual attention, digit memory, phonological processing, and receptive language abilities of individual children with identified word reading difficulties.
Design: Twenty-five children with word reading difficulties and 28 control children with good word reading skills participated. All children were aged between 8 and 11 years, with normal hearing sensitivity and typical non-verbal intelligence.
A facile general route for the synthesis of various selenocystine tripeptides containing acidic, basic and neutral side chain amino acids is reported. Here, TFA labile side chain protected selenocysteine has been used as a precursor for the synthesis of selenopeptides. The peptides are highly stable in dimethyl sulphoxide, thus enabling detailed NMR studies by solution phase 1- and 2-dimensional NMR spectroscopy.
View Article and Find Full Text PDFHere, we report the synthesis of a penta-selenopeptide consisting of five benzyl protected selenocysteine residues. This selenopeptide was well characterized by both one- and two-dimensional (D) NMR spectroscopies. We find that the solution conformation is enriched with β-sheet structures, which have a propensity to self-assemble and form amyloid fibrils.
View Article and Find Full Text PDF