Publications by authors named "R M Glaeser"

Apoferritin (apoF) is commonly used as a test specimen in single-particle electron cryo-microscopy (cryo-EM), since it consistently produces density maps that go to 3 Å resolution or higher. When we imaged apoF with a laser phase plate (LPP), however, we observed more severe particle-to-particle variation in the images than we had previously thought to exist. Similarly, we found that images of ribulose bisphosphate carboxylase/oxygenase (rubisco) also exhibited a much greater amount of heterogeneity than expected.

View Article and Find Full Text PDF

Apoferritin (apoF) is commonly used as a test specimen in single-particle electron cryo-microscopy (cryo-EM), since it consistently produces density maps that go to 3 Å resolution or higher. When we imaged apoF with a laser phase plate (LPP), however, we observed more severe particle-to-particle variation in the images than we had previously thought to exist. Similarly, we found that images of ribulose bisphosphate carboxylase/oxygenase (rubisco) also exhibited a much greater amount of heterogeneity than expected.

View Article and Find Full Text PDF

Although defocus can be used to generate partial phase contrast in transmission electron microscope images, cryo-electron microscopy (cryo-EM) can be further improved by the development of phase plates which increase contrast by applying a phase shift to the unscattered part of the electron beam. Many approaches have been investigated, including the ponderomotive interaction between light and electrons. We review the recent successes achieved with this method in high-resolution, single-particle cryo-EM.

View Article and Find Full Text PDF

Although defocus can be used to generate partial phase contrast in transmission electron microscope images, cryo-electron microscopy (cryo-EM) can be further improved by the development of phase plates which increase contrast by applying a phase shift to the unscattered part of the electron beam. Many approaches have been investigated, including the ponderomotive interaction between light and electrons. We review the recent successes achieved with this method in high-resolution, single-particle cryo-EM.

View Article and Find Full Text PDF

Streptavidin affinity grids provide strategies to overcome many commonly encountered cryo-electron microscopy (cryo-EM) sample preparation challenges, including sample denaturation and preferential orientations that can occur due to the air-water interface. Streptavidin affinity grids, however, are currently utilized by few cryo-EM labs because they are not commercially available and require a careful fabrication process. Two-dimensional streptavidin crystals are grown onto a biotinylated lipid monolayer that is applied directly to standard holey-carbon cryo-EM grids.

View Article and Find Full Text PDF