Circulating bat coronaviruses represent a pandemic threat. However, our understanding of bat coronavirus pathogenesis and transmission potential is limited by the lack of phenotypically characterized strains. We created molecular clones for the two closest known relatives of SARS-CoV-2, BANAL-52 and BANAL-236.
View Article and Find Full Text PDFLeachables in pharmaceutical products may react with biomolecule active pharmaceutical ingredients (APIs), for example, monoclonal antibodies (mAb), peptides, and ribonucleic acids (RNA), potentially compromising product safety and efficacy or impacting quality attributes. This investigation explored a series of models to screen extractables and leachables to assess their possible reactivity with biomolecules. These models were applied to collections of known leachables to identify functional and structural chemical classes likely to be flagged by these approaches.
View Article and Find Full Text PDFCurrent antigen delivery platforms, such as alum and nanoparticles, are not readily tunable, thus may not generate optimal adaptive immune responses. We created an antigen delivery platform by loading lyophilized Microporous Annealed Particle (MAP) with aqueous solution containing target antigens. Upon administration of antigen loaded MAP (VaxMAP), the biomaterial reconstitution forms an instant antigen-loaded porous scaffold area with a sustained release profile to maximize humoral immunity.
View Article and Find Full Text PDFThe persistent murine norovirus strain MNV is a model for human norovirus and enteric viral persistence. MNV causes chronic infection by directly infecting intestinal tuft cells, rare chemosensory epithelial cells. Although MNV induces functional MNV-specific CD8 T cells, these lymphocytes fail to clear infection.
View Article and Find Full Text PDF