Internationally, reference dosimetry for clinical proton beams largely follows the guidelines published by the International Atomic Energy Agency (IAEA TRS-398 Rev. 1, 2024). This approach yields a relative standard uncertainty of 1.
View Article and Find Full Text PDFMetal mining operations can release toxic metals to surrounding environments where site-specific conditions control the movement of contaminants. Colloid-facilitated transport, the transport of contaminants with small, mobile particles, has been recognized as a potential contaminant transport vector in groundwater, but it remains unclear under what conditions it is important and whether neutral, metal-rich mine drainage from legacy mining impacts this transport vector. This work presents a set of laboratory column experiments that study the effect of colloids on metal mobility in saturated, wetland sediment that has been receiving neutral mine drainage for nearly a century, using mixed and single metal input solutions at neutral pH.
View Article and Find Full Text PDFRadiation therapy manages pancreatic cancer in various settings; however, the proximity of gastrointestinal (GI) luminal organs at risk (OARs) poses challenges to conventional radiation therapy. Proton beam therapy (PBT) may reduce toxicities compared to photon therapy. This consensus statement summarizes PBT's safe and optimal delivery for pancreatic tumors.
View Article and Find Full Text PDFThe uniqueness of the Canadian spent nuclear fuel disposal container design requires a detailed understanding of the copper corrosion processes that could occur in deep geological repositories. This review aimed to identify knowledge gaps surrounding impacts of changing conditions and the evolution of corrosion processes as conditions change from moist/cool, through warm/dry, to cool/fully saturated. This review indicates that early, unsaturated corrosion, and compounding influences of previous corrosion are understudied.
View Article and Find Full Text PDFChromium, especially in its hexavalent form (Cr(VI)), poses significant health risks due to its carcinogenic properties. Emerging research suggests that biochar, a carbon-rich material derived from biomass pyrolysis, holds promise as an effective and sustainable solution for Cr(VI) remediation. Biochar's unique physicochemical properties, such as its high surface area, porous structure, and functional groups, contribute to its exceptional adsorption capacity for metals.
View Article and Find Full Text PDF