Publications by authors named "R M Alosmanov"

In this study, a graphene oxide combined with poly(2-diethylaminoethyl methacrylate) (GO@PDEAEMA) nanocomposite was synthesized for the separation and enrichment of Cd and Pb from food and water samples using the dispersive micro-solid phase extraction (d-μ-SPE) technique. The GO@PDEAEMA nanocomposite was synthesized using surface-initiated atom transfer radical polymerization (SI-ATRP) and characterized using various analytical techniques, such as FTIR, FE-SEM, TGA, BET, and XRD. The optimal experimental conditions were pH 8, 0.

View Article and Find Full Text PDF

In the present study, cotton fiber was treated with phosphorus trichloride in the presence of oxygen. As a result of the subsequent hydrolysis of modified cotton fibers, phosphorus-containing fragments with acidic groups and chlorine atoms were introduced onto their surface. Afterward, silver-containing composites based on raw and modified cotton fibers were prepared using the chemical reduction method.

View Article and Find Full Text PDF

Cobalt-chromium layered double hydroxide (CoCr LDH), α- and β- Co(OH) and amorphous Cr(OH) have been synthesized under different reaction conditions. The obtained CoCr LDH was modified by stearic acid (SA) and sodium stearate (SS). The obtained samples have been characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), Ultraviolet-visible- (UV-Vis), Fourier transform infrared- (FTIR) and Energy-dispersive X-ray- (EDX) spectroscopy.

View Article and Find Full Text PDF

The utilization of used crosslinked functional polymers (CFP) applied as sorbents or ion-exchangers is a great challenge arising from the need to protect the environment. In this paper we report a very promising way of obtaining carbon/magnetic composites based on metal (Co; Ni; Fe) derivatives of butadiene rubber-based phosphorus-containing polymer, which were treated as the model used CFP. We proposed a facile one-step thermal degradation approach to transform used CFP into carbon/magnetic composites (CMC).

View Article and Find Full Text PDF

In this study, mixed matrix membranes (MMMs) consisting of graphene oxide (GO) and functionalized graphene oxide (FGO) incorporated in a polymer of intrinsic microporosity (PIM-1) serving as a polymer matrix have been fabricated by dip-coating method, and their single gas transport properties were investigated. Successfully surface-modified GOs were characterized by Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The effect of FGO loading on MMM morphology and performance was investigated by varying the FGO content in polymer matrix from 9 to 84 wt.

View Article and Find Full Text PDF