Publications by authors named "R Lodge"

A challenging aspect in the synthesis of covalent organic frameworks (COFs) that goes beyond the framework's structure and topology is interpenetration, where two or more independent frameworks are mechanically interlocked with each other. Such interpenetrated or interlocked frameworks are commonly found in three-dimensional (3D) COFs with large pores. However, interlocked two-dimensional (2D) COFs are rarely seen in the literature, as 2D COF layers typically crystallize in stacks that maximize stabilization through π-stacking.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play important roles in the control of HIV-1 infection. Here, we performed RNA-seq profiling of miRNAs and mRNAs expressed in CD4 T lymphocytes upon HIV-1 infection. Our results reveal significant alterations in miRNA and mRNA expression profiles in infected relative to uninfected cells.

View Article and Find Full Text PDF

The intestinal environment facilitates HIV-1 infection via mechanisms involving the gut-homing vitamin A-derived retinoic acid (RA), which transcriptionally reprograms CD4 T cells for increased HIV-1 replication/outgrowth. Consistently, colon-infiltrating CD4 T cells carry replication-competent viral reservoirs in people with HIV-1 (PWH) receiving antiretroviral therapy (ART). Intriguingly, integrative infection in colon macrophages, a pool replenished by monocytes, represents a rare event in ART-treated PWH, thus questioning the effect of RA on macrophages.

View Article and Find Full Text PDF

In order to efficiently produce infectious viral particles, HIV must counter several restrictions exerted by host cell antiviral proteins. MARCH1 is a member of the MARCH protein family that restricts HIV infection by limiting the incorporation of viral envelope glycoproteins into nascent virions. Here, we identified two regulatory RNAs, microRNAs-25 and -93, induced by the HIV-1 accessory protein Vpu, that downregulate mRNA.

View Article and Find Full Text PDF

Activated-to-memory transitioning CD4 T cells display elevated expression of the HIV-1 co-receptor CCR5 and are more prone to HIV-1 latent infection. Here, we show that p53-regulated miRNA-103 downmodulates CCR5 levels in CD4 T lymphocytes. We reveal that miRNA-103 mimics, as well as Nutlin-3, an inhibitor of Mdm2-mediated p53 degradation, decrease CCR5-dependent HIV-1 infection.

View Article and Find Full Text PDF