In preclinical experiments, cyclic fasting-mimicking diets (FMDs) showed broad anticancer effects in combination with chemotherapy. Among different tumor types, triple-negative breast cancer (TNBC) is exquisitely sensitive to FMD. However, the antitumor activity and efficacy of cyclic FMD in TNBC patients remain unclear.
View Article and Find Full Text PDFBackground: The cutoff of <1% positive cells to define estrogen receptor (ER) negativity by immunohistochemistry (IHC) in breast cancer (BC) is debated. We explored the tumor immune microenvironment and gene-expression profile of patients with early-stage HER2-negative ER-low (ER 1%-9%) BC, comparing them to ER-negative (ER <1%) and ER-intermediate (ER 10%-50%) tumors.
Methods: Among 921 patients with early-stage I-III, ER ≤50%, HER2-negative BCs, tumors were classified as ER-negative (n = 712), ER-low (n = 128), or ER-intermediate (n = 81).
Background: Cyclin-Dependent Kinase 4/6 inhibitors (CDK4/6i) combined with Endocrine Therapy (ET) are the standard treatment for patients with Hormone Receptor-positive/HER2-negative advanced breast cancer (HR+/HER2- aBC).
Objectives: While CDK4/6i are known to reduce several peripheral blood cells, such as neutrophils, lymphocytes and platelets, the impact of these modulations on clinical outcomes is unknown.
Design: A multicenter, retrospective-prospective Italian study.
Breast cancers (BCs) arising in carriers of germline BRCA1 and BRCA2 pathogenic variants (PVs) have long been considered as indistinguishable biological and clinical entities. However, the loss of function of BRCA1 or BRCA2 proteins has different consequences in terms of tumor cell reliance on estrogen receptor signaling and tumor microenvironment composition. Here, we review accumulating preclinical and clinical data indicating that BRCA1 or BRCA2 inactivation may differentially affect BC sensitivity to standard systemic therapies.
View Article and Find Full Text PDFSevere calorie restriction, in the form of cyclic fasting or fasting-mimicking diets (FMDs), boosts the antitumor activity of cytotoxic chemotherapy in mouse models of triple-negative breast cancer (TNBC). This effect is mostly mediated by fasting/FMD-induced reduction of plasma glucose concentration and by a boost in antitumor immunity. However, clinical evidence that cyclic FMD may impact on the outcomes of advanced TNBC (aTNBC) patients is lacking.
View Article and Find Full Text PDF